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SUMMARY

Monthly rainfall at Guwahati is modelled using a Seasonal ARIMA
series. The model parameters are estimated using Marquardt algorithm for
non-linear optimization. The various stages ofmodel building are presented
in a simple algorithmic fonn. The,model is used to predict rainfall for the
month ahead and monthwise rainfall for the year ahead.

Key Words : Seasonal ARIMA model, acf, pacf, periodogram, white
noise, Marquardt Algorithm, Kolmogorov-Smimov test.

Introduction

Rainfall plays the most important role in the agricultural economy of
Assam. Aknost all the total available supply of vk'ater for growing crops in
the state is met by rainfall. Though heavy monsoon rainfall occurs every year
in Assam, it varies from season to season, year to year and place to place.
For example, the mean annual rainfall during the years 1951-1976 was 181.24
cmin Kamrup district with a standard deviation of53.48 cm, whereas the same
was 212.99 cm in Sibsagar district with a standard deviation of 29. 36 cm.
There have been statistical studies [2], [3], [4] on the rainfall in India and its
geographical regions. Parthasarathy and Mooley [2] have constructed a summer
monsoon (June to September) rainfall series for India as a whole for the period
1866-1970. Onthebasis ofapplication of Eisenhart's run testandMann-Kendall
rank statistic test, they have found that the series neither shows any significant
trend nor any significant oscillations. Power sp^trum analysis of the series
has been reported to indicate a weak Quasi Biennial Oscillation (Period 2.3
to 2.8 years).

While most of the studies deal with the annual rainfall, we attempt
modelling the monthly rainfall pattern of Guwahati using a Univariate Box
- Jenkins (UBJ) model and predict the rainfall ahead of one month and one
year. This study can be useful in predicting the occurrence of flood, planning
of irrigation schemes and crop plantation in the agricultural belt around
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Guwahati. In addition, it can be helpful in planning water supply schemes and
drainage facilities for the city.

In the next three sections we discuss the theoretical and computational
aspects of the UBJ model. SubsequenUy, we present the fitting of the model
with monthly rainfall data of Guwahati over a nine year period and compare
the values given by the model with the actual data. The predicted results are
also compared with the available tenth year data.

2. The Seasonal ARIMA model

. The Univariate Box-Jenkins (UBJ) model [1], often referred to as ARIMA
(Xuto-Regressive Integrated Moving Average) model, is one of the important
aiid useful tools for time series modelling. This model is very convenient for
both analysing the data sequence and forecasting.

Consider a non-stationary time series {Z^} whose d-th difference
{V'z^} is stationary. In this case, an ARIMA (p, q) model can be fitted to
the differenced series as

(Pp(B)V''z, =e^(B)e, (2.1)
P

where (Pp (B) =X ^
i = 0

and 9q(B) =XbiB\bo =l (2-3)
i = 0

with B being the backward shift operator and {e^} a white noise process.

The model (2. 1) is known as ARIMA (p, d, q) model and can represent
a variety of physical situations.

When the time series contains seasonality with some period s, there are
strong correlations between observations Z^, Z^.^, Z^ the series
can be modelled by Box-Jenkin's multiplicative seasonal ARIMA
(p,d,q)x(P,D,Q)'model as

Vp (B) (Pp(B^) V' Vf Z, - (B) 0Q (B^) e, (2.4)
where \|fp(B) and (B) are the AR and MA operators as in (2.2) and (2.3)
respectively and V° =(l -B')"^ is the seasonal difference operator.
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To speak in simple temis, the seasonal ARIMA model takes care of both
trend and seasonality of the time series.

3. Model Identification, parameter estimation and diagnostic checks

Specifying the UBJ model involves model identification and parameter
estimation. The model is accepted only after the diagnostic checks, verifying
model adequacy.

3.1 Model identification

Model identification in the present case involves finding the appropriate
values for s, d, D, p, q, P and Q. Identification requires the help from the
non-parametric specifications in terms of statistical properties of the time series.
These properties can be characterised by the autocorrelation function (acf) and
partial autocorrelation function (pacO in the time domain and the periodogram
in the frequency domain [5].

3.1 Parameter estimation

Tlie UBJ method favours estimates according to the Maximum Likelihood
Estimation (MLE) criterion. But a Least-Squares Estimator (LSE) is easier to
implement. It is to be noted that if the sequence {e^} is indejjendent gaussian,
the LSEs are asymptotically MLEs [5, 6].

Considering tlie equation (2.4), we get,

e, =0-' (B^) v;' (B) Vp (B) (Pp (B^) Vf V" Z, (3.2.1)
The least-squares estimators of the parameters in this case can be obtained

by minimising ^ ef with respect to the parameter set. We apply the Marquardt
te<l,2 N> .

algoritlim to find out tlie least-squares estimator. Marquardt algorithm is a
powerful iterative technique that combines the good features of the
Gauss-Newton method and the steepest descent method [7],

3.3 Model diagnostic checks

Tlie diagnostic checks are performed to study the model adequacy. These
checks include the study of the correlogram and the cumulative periodogram
of the residual series. If the model fails the diagnostic tests, a new and improved
model should be tried and tlie stages of identification, parameter estimation
and diagnostic checks should be repeated.
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3.3.1 Correlogram of the residual series

Forthe model adequacy, the whiteness property ofthe residuals mustbe tested.
This means that inthe correlogram, all the acfs except at lag 0 must liewithin the
± 2SE (standard error) limits at 95% confidence level.

3.3.2 Cumulative periodogram

The cumulative periodogramisayery effective test for randomness ofaseries.
Itchecks whether all the periodic characteristics ofthe series have been adequately
taken into account. If some of the cumulative periodogram points lie above the
upper significant line, presence of low frequency components are implied and if
some points lie below the lower significant line, presence of higher frequency
components are indicated [1,8].

The tasks of model identification, parameter estimation and diagnostic
checks are presented in Algorithm 3.1. ^

4. Forecasting

Forecasting for a lead time m by UBJ method is based on finding the
conditional expectation

^t+.-E[z,,yZ,Z,_,...] (4.1)
Consider themultiplicative seasonal ARIMA model of equation (2.4). We

can rewrite to get

Z^=PiZ,_i+ p2Z^_2 + .... + Pp.Z,_p, +e,t

+ St-1 +Ml e,_2 +.... +^p' et_p' (4.2)

where p'= (P +D) s+p+d and q'=Qs +q . pjS and ^ijS are functions of the
seasonal and nonseasonal AR parameters andMA parameters respectively. Note
that some of these parameters may be zero.

From (4.1) and (4.2) we get

^t+m~ Pi ^t+m- 1 P2^t+m-2"'" ••••+ Pp' ^t+m-p'"*•

+ + + + + + (4.3)

where = if j > m, j= 1,2,..., p'

and = 0 if

= if j ^ m,j = l,2,.,.,q'
I

Equation (4.3) provides the forecast function.
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5. Numerical results

The monthly rainfall data for the period 1956 to 1965 are used here. The
data are taken from the records of the hydrometric cell, Indian Meteorological
DepartnKnt, Guwahati, recorded at Guwahati AiiporL

5.1 Model fitting

The data of the first nine years are used in the fitting of the model. The
trace of the series (Fig. 5.1) indicates clearly a periodicity of 12 months. This
is supported by the correlogram (Fig. 5.2) and the periodogram (Fig. 5.3) of
the original series. The periodogram shows a prominent peak corresponding
to a period of 12 time units.
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Fig. 5.1.Monthly rainfall (1956-1964)

Fig. 5.2. Correlograinof rainfall series

20 30 40

frequency ccaponent

Fig. 5.3. Periodogram of rainfall series

100 120

50

50



PREDICTING MONTHLY RAINFALL USING A SEASONAL ARIMA MODEL 283

We next observe thecorrelogram of thedifferenced series Vj^ (Fig. 5.4).
Significant acf values are observed at the lags 3, 12 and 36. All other acfs
in the figure are within + 2SE and so it can be concluded that the seasonal
differenced series with D=1 has beconie approximately stationary. The pacf
diagram (Fig. 5.5) shows significant values at 9, 12 and 24. This suggests a
tentative seasonal ARIMA (0, 0, 3) x (2, 1, 0)'̂ model as

Z,= (1 + (P,) Z,_p - (cp, - (P2)-(P2 Z,_36 + e^- Vi e,_, - Vj e,_2- V3 e,_3
(5.2.1)

The parameters are estimated as explained in section 3.2 and given in
Table 5.1.
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Fig. 5.5. Pacf plot of (V12Z1)

Table 5.1. Estimated parameters of the seasonal
ARIMA model

Parameters Estimated values

(D, -0.64670

-0.36059

-0.18085

^2 -0.11607

^3 0.05060

50

so

The mean and the variance of the residual series are estimated as

mean =- 0.35065 cm and Og =27.47296 cm^.
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The comelogram of the residuals (upto a lag of 30) in Fig. 5.6 shows
that all the acfs are within ±2SE limits. Further from the cumulative

periodogram of the residual series (Fig. 5.7) it is observed that all the points
lie within the two Kolmogorov-Smironov 95% confidence limit boundaries.
Hence the residual series is white. The patterns in the data are, therefore, duly
taken care of and the model can be used for forecasting.

0 ' 5 10 IS 20
1 ag

£S 30
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Fig. 5.7. Cumulative Periodogram

5.2 Forecasting

Using the model (5,2.1), one month ahead forecasts and forecasts for lead
time m=l, 2 , 12 are made at the time origin t = 108. Table 5.2
gives a comparison of the forecasts with the observed values. A part of the
fitted model and forecasts are shown in Fig. 5.8 and Fig. 5.9 along with the
observed values.
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Table 5.2. Comparison of the observed data and forecasts

Time t

(month)
Observed values

(cm)
Forecasts (cm)

One step 12 time units

109 0.00 0.00 0.00

no 3.90 1.25 1.20

111 7.50 5.19 4.67

112 19.60 16.28 15.56

113 31.80 25.05 24.32

114 36.30 32.84 31.35

115 37.00 31.56 30.32

116 28.30 25.00 23.96

117 15.00 9.34 8.29

118 2.60 9.33 8.20

119 2.80 0.00 0.52

120 0.20 0.00 0.30

Discussion

1. '

2.

3.

From Figs 5.8,5.9 and table 5.2 it is clear that the model well represents
the rainfall pattern over a range of rainfall values which vary from 0 cm
to more than 50 cm and give reasonably good predictions.

Since the rainfall in some months in the winter is scanty (sometimes even
0 cm is a month) the predictionsfor such months are not good.

As discussed previously there may be year to year periodic variation of
rainfall data. This variation should also be taken into account for

modelling and prediction. However, such a study requires rainfall data for
a sufficient number of years and is beyond the scope of tlie present work.
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Conclusion

We have fitted a seasonal ARIMA model to the monthly rainfall data
of Guwahati and estimated the model parameters. The model is found to
adequately represent the series. The forecasts made by the model arecompared
with the observed values and are found to be reasonably good. The algorithm
presented here is general in nature andcanbe adopted to model monthly rainfall
data of any place.

Algorithm 3A

Given the rainfall series X(t) for t = 1, ..., N.

Initialize the orders of difference d = 0 and seasonal difference D = 0.

Step 1 Estimate the mean of the series and subtract it from X(t) to get the
modified series Z(t).

Step 2 Consider d-th difference of the series.

Plot trace, acf, spectrum of the differenced series.

Step 3 Check for seasonality.

Step4 If seasonality is present consider the nextvalueof D.

Plot trace, acf, pacf, spectrum of the seriesand go to step 3.

Step 5 Test for stationarity.

If approximate stationarity is achieved,

then select those values of d and D

else select new value of d and go to step 2

Step 6 Compare with theoretical acf, pacf, patterns of common ARIMA
processes. Suggest structures.

Step7 Selecta new (d,D, P, Q, p, q) from the suggested structures.

Step 8 Make initial estimates of i|f, (p, v, 0.

Step 9 Improve estimates.

Step10 Compute model residues. Perform model diagnostic checks.
If the checks fail then go to step 7.

Step 11 The model is ready.
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SUMMARY

The level of development of various districts of Uttar Pradesh was
estimated with the help of composite index based on optimum combination
of thirty eight economic indicators. All the sixty three districts of the State
were included in the study. The data for the year 1991-92 on thirty eight
economic indicators were used. Eighteen indicators were directly concerned
with agricultural development, seven indicators depicted the progress of
development in industrial sector and the rest thirteen indicators presented
the level of development in infrastructural service sector.

The level of development was examined separately for agricultural,
industrial and overall socio-economic sectors. The district of Ghaziabad was
found to rank first and that of Chamoli was the last in the overall

socio-economic development. Wide disparities in the level of development
has been observed among different regions of the State and the western
region had been found to be better developed as compared to other regions
of the State. Positive significant association was found between the levels
of development in the agricultural and industrial sectors indicating that the
growth and progress of agriculture and industry had been going hand in
hand in the State. Six districts covering about 9 per cent area and little
more than 10 per cent population of the State, were found to be better
developed whereas twenty three districts having 41 per cent area and 35
per cent population were categorised as low developed districts.

For bringing about uniform regional development, potential targets for
various indicators had been estimated for poorly developed districts. The
study revealed that the low developed districts required improvements of
various dimensions in most of the indicators for enhancing the level of
overall socio-economic development.

Key words : Composite index. Development indicators. Model districts.
Potential target. Regional disparities.

Introduction

Uttar Pradesh is primarily aii agricultural state. The total foodgrains
production of the State during 1989-90 was of the order of 338 lakh tonnes

* Study undertaken in the Research Unit of ISAS during 1995.


